Roadmap

Algorithms for query evaluation

Joins

By Marina Barsky
Winter 2017, University of Toronto

Join operator: Cartesian product

1. Set of tuples $\boldsymbol{r} \boldsymbol{s}$ that are formed by choosing the first part (r) to be any tuple of \mathbf{R} and the second part (\boldsymbol{s}) to be any tuple of \mathbf{S}.
2.Schema for the resulting relation is the union of schemas for \mathbf{R} and S.
2. If \mathbf{R} and \mathbf{S} happen to have some attributes in common, then prefix those attributes by the relation name.

$T=R \times S$

Cartesian product (cross-product)

A	B	C	D	E
x	1	x	10	a
y	2	y	10	a
		z	20	b
R		z	10	b

SELECT *

RxS: | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| x | 1 | x | 10 | a |
| x | 1 | y | 10 | a |
| x | 1 | z | 20 | b |
| x | 1 | z | 10 | b |
| y | 2 | x | 10 | a |
| y | 2 | y | 10 | a |
| y | 2 | z | 20 | b |
| y | 2 | z | 10 | b |

FROM R, S

If there is no WHERE clause for 2 relations, it is probably a bug, as it will produce a Cartesian product (cross-product) - a huge relation of size $T(R) * T(S)$

Join: reminder

- Natural join (\bowtie) - a Cartesian product with equality condition on common attributes

Example:

- If R has schema $R(A, B, C, D)$, and if S has schema $S(E, B, D)$
- Common attributes: B and D
- Then:

$$
R \bowtie S=\pi_{A, B, C, D, E}\left[\sigma_{R . B=S . B} \wedge_{R . D=S . D}(R \times S)\right]
$$

- In SQL:

SELECT R.A, B, C, D, E FROM R, S WHERE R.B = S.B AND R.D = S.D
SELECT * FROM R NATURAL JOIN S

Join: Example

$\mathbf{R} \bowtie \boldsymbol{S} \begin{aligned} & \text { SELECT R.A,B,C,D } \\ & \text { FROM R, S } \\ & \text { WHERE R.A }=\text { S.A }\end{aligned}$

R			S	
A	B	C	A	D
1	0	1	3	7
2	3	4	2	2
2	5	2	2	3
3	1	1		

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

Join: Example

$\mathbf{R} \bowtie \boldsymbol{S} \begin{aligned} & \text { SELECT R.A,B,C,D } \\ & \text { FROM R, S } \\ & \text { WHERE R.A }=\text { S.A }\end{aligned}$

R			S	
A	B	C	A	D
1	0	1	3	7
2	3	4	2	2
2	5	2	2	3
3	1	1		

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

A	B	C	D
2	3	4	2
2	3	4	3

Join: Example

$\mathbf{R} \bowtie \boldsymbol{S} \begin{aligned} & \text { SELECT R.A,B,C,D } \\ & \text { FROM R, S } \\ & \text { WHERE R.A }=\text { S.A }\end{aligned}$

R			S	
A	B	C	A	D
1	0	1	3	7
2	3	4	2	2
	5	2	2	3
3	1	1		

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

A	B	C	D
2	3	4	2
2	3	4	3
2	5	2	2

Join: Example

$\mathbf{R} \bowtie \boldsymbol{S}$ SELECT R.A,B,C,D
FROM R,S WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

R			S	
A	B	C	A	D
1	0	1	3	7
2	3	4	2	2
2	5	2	2	3
3	1	1		

A	B	C	D
2	3	4	2
2	3	4	3
2	5	2	2
2	5	2	3

Join: Example

$\mathbf{R} \bowtie \boldsymbol{S}$ SELECT R.A,B,C,D
FROM R,S WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

A	B	C	D
2	3	4	2
2	3	4	3
2	5	2	2
2	5	2	3
3	1	1	7

Semantically: A Subset of the Cross Product

$\mathbf{R} \bowtie \boldsymbol{S}$ SELECT R.A,B,C,D FROM R,S WHERE R.A = S.A

Example: Returns all pairs of tuples $r \in R, s \in S$ such that $r . A=s . A$

Can we actually implement a join this way?

How do we evaluate the following query:

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C

R	A	B	C	S	C	D	E
	a	1	10	,	10	X	2
	b	1	20		20	y	2
	c	2	10		30	z	2
	d	2	35		40	X	1
	e	3	45		50	y	3

Answer	B	D
	2	x

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C

Plan I

- Do Cartesian product (produce all pairs FROM R, S)
- Select tuples according to WHERE clause
- Do projection: select only columns of SELECT clause

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C

Product, select, project

RxS	R.A	R.B	R.C	S.C	S.D	S.E
Each row of R is coupled with each row of S	a	1	10	10	x	2
a	1	10	20	y	2	
	\cdot					
\cdot						
c	2	10	10	x	2	
	\cdot					

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C
Scan the resulting (huge!) product table and check conditions

RxS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	x	2
Bingo!						
Got one...	\cdot	1	10	20	y	2
	\cdot	2	10	10	x	(2)

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C
Plan II

- Do selection on R
- Do selection on S
- Join results on attribute C
- Project B,D columns and place in the result

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C
Select, join, project R

A	B	C
a	1	10
b	1	20
c	2	10
d	2	35
e	3	45

SELECT B,D
FROM R,S
WHERE R.A = " c " AND S.E $=2$ AND R.C=S.C

Plan III

Use R.A and S.C Indexes

- Use R.A index to select R tuples with R.A = " c "
- For each R.C value found, use S.C index to find matching tuples from S
- Eliminate S tuples where $S . E \neq 2$
- In surviving R,S tuples, project B,D attributes and place in result

Select B,D
From R,S
Where R.A = "c" AND S.E = 2 AND R.C=S.C
Search, join, project

R			
A	B	C	$\leftarrow \mathrm{I}_{1} \boldsymbol{A}={ }^{\mathbf{A}} \mathrm{C}^{\prime \prime}$
a	1	10	1
b	1	20	<c,2,10>
C	2	10	
d	2	35	
e	3	45	

S

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C
Search, join, project

R					S	
A	B	C		C	D	E
a	1	10		10		2
	1			20		2
	2	10		30		2
d	2	35		40		1
e	3	45		50		3

SELECT B,D
FROM R,S
WHERE R.A = "c" AND S.E = 2 AND R.C=S.C
Search, join, project

R				S		
A	B	C	A= I1 - I2	C	D	E
a	1	10	1	10	X	2
b	1	20	$<c, 2,10\rangle<10, x, 2\rangle$	20	y	2
C	2	10	check=2?	30	Z	2
d	2	35	output: <2,x>	40	x	1
e	3	45		50	y	3

Join algorithm I: Nested Loop

Setup

- We write $\mathbf{R} \bowtie S$ to mean join R and S by returning all tuple pairs where all shared attributes are equal
- We write $\mathbf{R} \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal
- For simplicity, we'll consider joins on two tables and with equality constraints ("equijoins")
- Given a relation R, let:
- $T(R)=\#$ of tuples in R

However joins can merge > 2
tables, and some algorithms do
support non-equality
constraints!

- $\mathbf{B}(\mathbf{R})=\#$ of blocks (pages) in R

Recall that we read / write entire pages with disk IO

Nested Loop Join (NLJ)

Compute R $\bowtie S$ on A :
for r in R :
for s in S :
if $r[A]==s[A]$:
OUT (r,s)

Nested Loop Join (NLJ)

Cost:
Compute $\mathrm{R} \bowtie S$ on A :

for r in R :

for s in S :
if $r[A]=s[A]$:
OUT (r, s)

$$
B(R)
$$

1. Loop over the tuples in R

Note that our IO cost is based on the number of pages loaded, not the number of tuples!

Nested Loop Join (NLJ)

Cost:

Compute R $\bowtie S$ on A :

$$
B(R)+T(R) * B(S)
$$

for r in R :
for s in S :

$$
\begin{aligned}
& \text { if } r[A]==s[A]: \\
& \text { OUT }(r, s)
\end{aligned}
$$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

Have to read all of S from disk for every tuple in R!

Nested Loop Join (NLJ)

Compute R $\bowtie S$ on A :
for r in R :
for s in S :

$$
\text { f } r[A]==s[A]:
$$

OUT (r,s)

Cost:

$$
B(R)+T(R) * B(S)
$$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just change the if statement!

Nested Loop Join (NLJ)

Cost:
Compute $\mathrm{R} \bowtie S$ on A :
for r in R :
for s in S :

$$
\begin{aligned}
& \text { if } \mathrm{r}[\mathrm{~A}]=\mathrm{s}[\mathrm{~A}] \text { : } \\
& \text { OUT }(\mathrm{r}, \mathrm{~s})
\end{aligned}
$$

What would the result be if our join condition is trivial (if TRUE)?

$$
B(R)+T(R) * B(S)
$$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
4. Output combined tuple if match

Nested Loop Join (NLJ)

Cost:
Compute $\mathrm{R} \bowtie S$ on A :
for r in R :
for s in S :
if $r[A]==s[A]$:
OUT (r, s)

$$
B(R)+T(R) * B(S)
$$

What if R ("outer") and S
("inner") switched?

$$
\mathrm{B}(S)+\mathrm{T}(S) * \mathrm{~B}(R)
$$

Outer vs. inner selection makes a huge differenceDBMS needs to know which relation is smaller!

Join algorithm IA:
Block Nested Loop
IO-aware modification

Block Nested Loop Join (BNLJ)

Compute $\mathrm{R} \bowtie$ S on A :
for each chunk c_{R} of R of size $M-1$:
load c_{R} pages of R into mem
for each p_{s} page of S :
for each tuple s in p_{s} :
for each tuple r in C_{R}

$$
\text { if } r[\mathrm{~A}]==\mathrm{s}[\mathrm{~A}] \text { : }
$$

OUT (r, s)

Cost:
$\mathrm{B}(R)$

1. Load in M-1 pages of R at a time (leaving 1 page free for S)

Note: There could be some speedup here due to the fact that we're reading multiple pages sequentially however we'll ignore this here!

Block Nested Loop Join (BNLJ)

Given M pages of memory

Compute $\mathrm{R} \bowtie S$ on A :
for each chunk c_{R} of R of size $M-1$: load c_{R} pages of R into mem for each p_{s} page of S :
for each tuple s in p_{s} :
for each tuple r in C_{R} if $r[\mathrm{~A}]==s[\mathrm{~A}]$: OUT (r, s)

Cost:

$$
B(R)+\frac{B(R)}{M-1} B(S)
$$

1. Load in $M-1$ pages of R at a time (leaving 1 page free for S)
2. For each (M-1)-page segment of R, load each page of S

Note: Faster to iterate over the smaller relation first!

Block Nested Loop Join (BNLJ)

Given M pages of memory

Compute $\mathrm{R} \bowtie$ S on A :
for each chunk c_{R} of R of size $M-1$:
load c_{R} pages of R into mem for each p_{s} page of S :
for each tuple s in p_{s} : for each tuple r in C_{R} if $r[A]==s[A]$: OUT (r,s)

Cost:

$$
B(R)+\frac{B(R)}{M-1} B(S)
$$

1. Load in $M-1$ pages of R at a time (leaving 1 page free for S)
2. For each (M-1)-page segment of R, load each page of S
3. Check against the join conditions with all in-mem tuples

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
- We only read all of S from disk for every (M-1)-page segment of R !
- Still the full cross-product, but more done in memory

NL

$$
B(R)+T(R) * B(S)
$$

BNL

$$
\mathrm{B}(R)+\frac{B(R)}{M-1} B(S)
$$

$$
\text { BNLJ is faster by roughly } \frac{(M-1) T(R)}{B(R)} \text { ! }
$$

BNLJ vs. NLJ: Benefits of IO Aware

- Example:
- $B(R)=500$ pages
- $B(S)=1000$ pages
- $T(R)=50,000$ tuples
- $T(S)=100,000$ tuples
- We have 11 pages of memory ($\mathrm{M}=11$)
- NLJ: Cost = 500 +50,000*1000 = 50 Million IOs ~= 140 hours
- BNLJ: Cost $=500+\frac{500 * 1000}{10}=\mathbf{5 0}$ Thousand $\mathrm{IOs} \sim=\underline{\mathbf{0 . 1 4}}$ hours

A very real difference from a small change in the algorithm!

Can we do better than Cross-Product?

Smarter than cross-products: from quadratic to nearly linear

- All joins that compute the full cross-product have some quadratic term
- For example we saw:

$$
N L B(R)+T(R) B(S)
$$

$$
B N L \quad B(R)+\frac{\boldsymbol{B}(\boldsymbol{R})}{M-1} \boldsymbol{B}(\boldsymbol{S})
$$

- Now we'll see some (nearly) linear joins:
- ~ $O(B(R)+B(S))$

We get this gain by taking advantage of data structures and algorithms - for simplicity considering equality constraints ("equijoin") only!

Join algorithms II: Index Nested Loop

Index Nested Loop Join (INLJ)

Compute $\mathrm{R} \bowtie$ S on A :
Given index I on S.A:
for r in R :
$s_{L}=$ index $/(r[A])$
for s in s_{L} :
OUT r,s

Cost:

$$
B(R)+T(R)^{*}\left(T H_{i}+S C(S, A)\right)
$$

where TH_{i} is the height of a B tree and $\boldsymbol{S C}(\mathbf{S}, \mathbf{A})$ is the $I O$ cost to collect all values equal to r[A] in the index of S.A; assuming these fit on one page, ~ 3 is good est.

$$
B(R)+3 T(R)
$$

\rightarrow We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!

INLJ - cost

Algorithm:

for each tuple r of R, lookup all tuples in S with key $r[Y]$ and output their join with r.

- We want to compute $R(X, Y) \bowtie S(Y, Z)$ on Y
- Suppose there is an index on $S[Y]$.
- Cost:
- $\mathbf{B}(\mathbf{R})$ to read entire R once
- Each tuple of R joins with $\mathrm{SC}(\mathrm{S}, \mathrm{Y})=\mathrm{T}(S) / \mathrm{V}(S, Y)$ tuples of S, on average.
- If S has a non-clustered index on Y :
$\rightarrow \mathrm{I} / \mathrm{O}$ cost is $\mathrm{B}(\mathrm{R})+\mathrm{T}(R) \times\left(\mathrm{TH}_{\mathrm{i}}+\mathrm{T}(\mathrm{S}) / \mathrm{V}(S, Y)\right)$
- If S has a clustered index on Y :
$\rightarrow \mathrm{I} / \mathrm{O}$ cost is $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \times\left(\mathrm{TH}_{\mathrm{i}}+\mathrm{B}(S) / \mathrm{V}(S, Y)\right)$

$$
B(R)+T(R)^{*}\left(T H_{i}+S C(S, A)\right)
$$

INLJ: cost example

- $T(R)=10,000, B(R)=1000$
- $T(S)=5000, B(S)=500, V(S, Y)=100$
- $M=11$

INLJ:

- To compute $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \bowtie \mathrm{S}(\mathrm{Y}, \mathrm{Z})$ using a clustered index on $\mathrm{S}[\mathrm{Y}]$:

$$
1000+10,000 *(3+500 / 100)=81,000 \mathrm{I} / \mathrm{O}^{\prime} \mathrm{s}
$$

- Even when the top level of B-tree is buffered:

$$
1000+10,000 *(1+500 / 100)=61,000 \mathrm{I} / \mathrm{O}^{\prime} \mathrm{s}
$$

BNLJ:

- $1000+100 * 500=51,000$ I/Os
\rightarrow Use of index is not beneficial if selection cardinality is high (50 in this example)

Join using sorted indexes

- We want to compute $R(X, Y) \bowtie S(Y, Z)$ on Y
- If both R and S have sorted (B-tree) index on Y, do a zigzagjoin:
- We scan the leaves of both B-trees in order. In the best case, we use just $\mathbf{B}(\mathbf{R})+\mathbf{B}(\mathbf{S})$ disk $\mathrm{I} / \mathrm{O}^{\prime}$ s to read their indexes (if there are no matching values).

Zigzag Join - example

Leaves of B-tree index on $\mathrm{R}[\mathrm{Y}]$

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- Start with the 1 and 2 . Since $1<2$ skip 1 in R's index.

Zigzag Join - example

Leaves of B-tree index on R[Y]

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- Start with the 1 and 2 . Since $1<2$ skip 1 in R's index.
- Since $2<3$ skip the 2's in S's index.

Zigzag Join - example

Leaves of B-tree index on $\mathrm{R}[\mathrm{Y}]$

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- Start with the 1 and 2 . Since $1<2$ skip 1 in R's index.
- Since $2<3$ skip the 2's in S's index.

Zigzag Join - example

Leaves of B-tree index on $\mathrm{R}[\mathrm{Y}]$

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- Start with the 1 and 2 . Since $1<2$ skip 1 in R’s index.
- Since $2<3$ skip the 2's in S's index.
- Since $3<4$ skip 3 in R.

Zigzag Join - example

Leaves of B-tree index on $\mathrm{R}[\mathrm{Y}]$

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- Start with the 1 and 2 . Since $1<2$ skip 1 in R's index.
- Since $2<3$ skip the 2's in S's index.
- Since $3<4$ skip 3 in R.
- Join 4's (retrieve records).

Zigzag Join - example

Leaves of B-tree index on $\mathrm{R}[\mathrm{Y}]$

Leaves of B-tree index on S[Y]

- Start with the 1 and 2 . Since $1<2$ skip 1 in R's index.
- Since $2<3$ skip the 2's in S's index.
- Since $3<4$ skip 3 in R.
- Join 4's (retrieve records).

Zigzag Join

Leaves of B-tree index on R[Y]

Leaves of B-tree index on $\mathrm{S}[\mathrm{Y}]$

- We jump back and forth between the indexes finding Y -values that they share in common.
- Tuples from R with Y-value that don't appear in S need never be retrieved, and similarly tuples of S whose Y-value doesn't appear in R need never be retrieved.
- The worst-case cost (clustered indexes, $\mathrm{R}<\mathrm{S}$):
- $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})+\mathrm{B}(\mathrm{R}) * \mathrm{~B}(\mathrm{~S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$

Join algorithm III:

 Sort-Merge Join (SMJ)

Sort Merge Join (SMJ): Basic Procedure

To compute $\mathrm{R} \bowtie S$ on A :
Note that we are only considering equality join conditions here

1. Sort R, S on A using external merge sort
2. Scan sorted files and "merge"
3. [May need to "backup"- see next]

Note that if R, S are already sorted on A, SMJ will be awesome!

SMJ Example: R $\bowtie S$ on A with 3-page buffer

- For simplicity: Let each page be one tuple, and let the first value be of column A

SMJ Example: R \bowtie S on A with 3-page buffer

1. Sort the relations R, S on the join key (first value)

SMJ Example: R $\bowtie S$ on A with 3-page buffer

2. Scan and "merge" on join key!

SMJ Example: R $\bowtie S$ on A with 3-page buffer

2. Scan and "merge" on join key!

SMJ Example: R $\bowtie S$ on A with 3-page buffer

2. Scan and "merge" on join key!

SMJ Example: R $\bowtie S$ on A with 3-page buffer

2. Done!

What happens if join keys have many duplicates?

Multiple tuples
with same join key: "backup"

1. Start with sorted relations, and begin scan / merge...

Multiple tuples
with same join key: "backup"

1. Start with sorted relations, and begin scan / merge...

Multiple tuples
with same join key: "backup"

1. Start with sorted relations, and begin scan / merge...

Multiple tuples
with same join key: "backup"

1. Start with sorted relations, and begin scan / merge...

SMJ: cost of a final scan

- At best, no backup \rightarrow final scan takes $\mathbf{B}(\mathbf{R})+\mathbf{B}(\mathbf{S})$ reads
- For ex.: if no duplicate values in join attribute
- At worst (e.g. full backup each time), scan could take $\mathbf{B (R})^{*}$ B(S) reads!
- For ex.: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
- Roughly: For each page of R, we'll have to back up and read each page of S...
- Not a very realistic scenario

SMJ: Total cost

- Cost of SMJ is cost of sorting R and S and writing temporary sorted files: 4B(R) + 4B(S)
- Plus the cost of scanning: $\sim \mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- Because of backup: in worst case $B(R)^{*} B(S)$; but this would be very unlikely

```
5B(R)+5B(S)
```


SMJ cost: example

- We have 101 buffer pages,
- $B(R)=1000$, and $B(S)=500$ pages:
- SMJ:
- Sort both in two passes: 4* $1000+$ 4* $^{*} 500=6,000 \mathrm{IOs}$
- Merge-join phase $1000+500=1,500 \mathrm{IOs}$
- = 7,500 IOs
- What with BNLJ?
- $500+1000 *\left\lceil\frac{500}{100}\right\rceil=\underline{5,500 ~} \mathrm{IOs}$
- But, if we have 26 buffer pages?
- SMJ has same behavior (still 2 passes): =7,500 IOs
- BNLJ? 25,500 IOs!

SMJ is ~ linear vs. BNLJ is quadratic...

A simple optimization for SMJ:

 join during sort- SMJ is composed of a 2PMMS sort and a join of sorted tuples
- During the $\mathbf{2 P M M S}$, if R and S have <= ($\boldsymbol{M}-\mathbf{1}$) (sorted) runs in total:
- We could do two separate 2PMMS merges (for each of R \& S) at this point, complete the sort phase, and start the join phase...
- OR, we could combine them: do one ($\mathrm{M}-1$)-way merge simultaneously for R and S and complete the join!

Un-Optimized SMJ

Given M buffer pages

Unsorted input relations

Sort Phase (Ext. Merge Sort)

Merge / Join Phase

Joined output file created!

Simple SMJ Optimization

Given M buffer pages

Unsorted input relations

Partition sort Phase (2PMMS)

$<=(M-1)$ total runs for R and S

Merge / Join Phase

(M-1)-Way Merge / Join

Joined output file created!

Optimized SMJ: memory requirements

- If we can initially split R and S into total $\mathrm{M}-1$ runs, each run of length <= \mathbf{M}, then we only need $\mathbf{3 (B (R)} \boldsymbol{+} \boldsymbol{B}(S))$ for SMJ!
- 2 Read/Write per page to sort runs in memory, 1 Read per page to (M-1)-way merge / join!
- How much memory for this to happen?

$$
\text { - } \frac{B(R)+B(S)}{M-1} \leq M \Rightarrow \sim \mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{~S}) \leq M^{2}
$$

- Thus, $\mathbf{M} \geq \operatorname{sqrt}(\mathbf{B}(\mathbf{R})+\mathbf{B}(\mathbf{S}))$ is an approximate sufficient condition for this algorithm

If the sum of R, S has $<=M^{2}$ pages, then $S M J$ costs $3(B(R)+B(S))!$

Takeaway points from SMJ

If input already sorted on join key, skip the sorts

- SMJ is basically linear
- Nasty but unlikely case: too many duplicate join keys

SMJ needs to sort both relations

- If $B(R)+B(S)<=M^{2}$ then cost is $\mathbf{3}(\boldsymbol{B}(R)+\boldsymbol{B}(S))$

Recall: Hashing

- Magic of hashing:
- A hash function h_{M} maps into [0,M-1]
- And maps nearly uniformly
- A hash collision is when $x!=y$ but $h_{M}(x)=h_{M}(y)$
- Note however that it will never occur that $x=y$ but $h_{M}(x)!=h_{M}(y)$
- We hash on attribute A, so our hash function $h_{M}(t)$ has the form $h_{M}(t . A)$.
- Collisions may be more frequent, as we have much more tuples than the buckets

Hash Join: High-level

To compute $R \bowtie S$ on A :
Note again that we are only
considering equality join
condition here

1. Partition Phase: Using one (shared) hash function $\boldsymbol{h}_{\boldsymbol{M}}$, partition R and S into M-1 buckets
2. Matching Phase: Take pairs of buckets whose tuples have the same values for \boldsymbol{h}, and join these

We decompose the problem using h_{M}, then complete the join

HJ: high-level

Note our new convention: pages each have two tuples (one per row)

1. Partition Phase: Using one (shared) hash function $\boldsymbol{h}_{\boldsymbol{M}}$, partition R and S into M-1 buckets

HJ: high-level

2. Matching Phase: Take pairs of buckets whose tuples have the same values for $\boldsymbol{h}_{\boldsymbol{M}}$, and join these

HJ: high-level

2. Matching Phase: Take pairs of buckets whose tuples have the same values for $\boldsymbol{h}_{\boldsymbol{M}}$, and join these

Hash Join phase 1: partitioning

Given M buffer pages
Goal: For each relation, partition relation into buckets such that if $h_{M}(t . A)=h_{M}\left(t^{\prime} . A\right)$ they are in the same bucket

Given M buffer pages, we partition into $\mathrm{M}-1$ buckets:

- We use M-1 buffer pages for output (one for each bucket), and 1 for input
- The "dual" of merge-sorting.
- For each tuple t in input, copy to a buffer page $h_{\text {M }}(\mathrm{t} . \mathrm{A})$
- When buffer fills up, flush to disk

How big are the resulting buckets?

- Given B blocks of R, we partition into M-1 buckets:
- \rightarrow Ideally our buckets are each of equal size ~ \mathbf{B} / \mathbf{M} pages
- What happens if there are many hash collisions?
- Some buckets could be > B/M
- What happens if there are multiple duplicate join keys?
- Nothing we can do here... could have some skew in size of the buckets

How big at most do we want the resulting buckets?

- Ideally, our buckets would be of size $\leq M-1$ pages
- Recall: If we want to join a bucket R_{i} from R and one from S, we can do BNLJ in linear time if for one of them (say R_{i}),

$$
B(R i) \leq M-1!
$$

> Recall for BNLI

$$
B(R)+\frac{B(R) B(S)}{M-1}=1
$$

- And more generally, being able to fit bucket in memory is advantageous

Hash Join Phase 1: Example

Given $M=3$ buffer pages
We partition into $\mathbf{M - 1} \mathbf{=} \mathbf{2}$ buckets using hash function $\mathbf{h}_{\mathbf{2}}$ so that we can have one buffer page for each partition (and one for input)

Disk

For simplicity, we'll look at partitioning one of the two relations - we just do the same for the other relation!

Recall: our goal will be to get $M-1=2$ buckets of size $<=$ M-1 $\rightarrow 2$ pages each

Hash Join Phase 1: Example

Given $M=3$ buffer pages

1. We read pages from R into the "input" page of the buffer...

Output (bucket) pages

Hash Join Phase 1: Example

Given $M=3$ buffer pages

2. Then we use hash function h_{2} to find the output bucket, which each has one page in the buffer

Disk

Output (bucket) pages

Hash Join Phase 1: Example

Given $M=3$ buffer pages

2. Then we use hash function h_{2} to find the output bucket, which each has one page in the buffer

Disk

Output (bucket) pages

Hash Join Phase 1: Example

Given $M=3$ buffer pages
3. We repeat until the buffer bucket pages are full...

Output (bucket) pages

Hash Join Phase 1: Example

Given $M=3$ buffer pages
3. We repeat until the buffer bucket pages are full... then flush to disk

Disk

Hash Join Phase 1: Example

Given $M=3$ buffer pages
Note that collisions can occur!

Hash Join Phase 1: Example

Given $M=3$ buffer pages

Finished phase I for R

Hash Join Phase 1: complete

Given $M=3$ buffer pages

We wanted buckets of size $M-1=2$... Some of them could be larger due to:
(1) Duplicate join keys
(2) Hash collisions

Now that we have partitioned R and S...

Hash Join Phase 2: Matching

- Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!

Hash Join Phase 2: Matching

- Again, since $x=y \rightarrow h(x)=h(y)$, we only need to consider pairs of buckets (one from R, one from S) that have the same hash function value
- If our buckets are $\sim \boldsymbol{M}-1$ pages each, can join each such pair using BNLJ in linear time; recall (with $B(R)=M-1$):

$$
\text { BNLJ Cost: } \mathrm{B}(R)+\frac{B(R) B(S)}{M-1}=B(R)+\frac{(M-1) B(S)}{M-1}=\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{~S})
$$

Joining the pairs of buckets is linear! (As long as smaller bucket <= M-1 pages)

Hash Join Phase 2: Matching

Hash Join Phase 2: Matching

$\mathrm{R} \bowtie S$ on A

If it is not an equijoin, we explore this whole grid!

Hash Join: memory requirements

- Given M buffer pages
- Suppose (reasonably) that we can partition into M buckets in 1 pass:
- For R, we get M buckets of size $\sim B(R) / M$
- To join these buckets in linear time, we need each bucket of R to fit in $\mathrm{M}-1$ pages, so we have:

$$
M-1 \geq \frac{B(R)}{M} \Rightarrow \sim \boldsymbol{M}^{2} \geq \boldsymbol{B}(\boldsymbol{R})
$$

```
Quadratic relationship between smaller
relation's size \& memory!
```


Hash Join: cost

- Given enough buffer pages as on previous slide...
- Partitioning requires reading + writing each page of R,S
- $\rightarrow 2(\mathrm{~B}(\mathrm{R})+\mathrm{B}(\mathrm{S})) \mathrm{IOs}$
- Matching (with BNLJ) requires reading each page of R,S
- $\rightarrow \mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S}) \mathrm{IO} \mathrm{s}$

HJ takes $\sim 3(B(R)+B(S))!$

Sort-Merge vs. Hash Join

- Given enough memory, both SMJ and HJ have performance:

$$
\sim 3(B(R)+B(S))
$$

- "Enough" memory =
- $\mathrm{SMJ}: \mathrm{M}^{2}>\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- $\mathrm{HJ}: \mathrm{M}^{2}>\min \{\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S})\}$

Hash Join superior if relation sizes differ greatly. Why?

Further Comparison of Hash vs. Sort Joins

- Hash Joins are highly parallelizable.

- Sort-Merge less sensitive to data skew and result is sorted

Summary

- Saw IO-aware join algorithms
- Massive difference
- Memory sizes are the key in hash versus sort join
- Hash Join = Little dog (depends on smaller relation)
- Skew is also a major factor

Impact of Buffering

- If several operations are executing concurrently, estimating the number of available buffer pages is guesswork
- Repeated access patterns interact with buffer replacement policy
- e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (sequential flooding).
- Does replacement policy matter for Block Nested Loops?
- What about Index Nested Loops? Sort-Merge Join?

