
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Algorithms for query
evaluation

Joins

Lecture 03.02.

By Marina Barsky
Winter 2017, University of Toronto

Join operator: Cartesian product

T=R x S

X

1. Set of tuples rs that are formed

by choosing the first part (r) to be

any tuple of R and the second part

(s) to be any tuple of S.

2.Schema for the resulting relation

is the union of schemas for R and

S.

3.If R and S happen to have some

attributes in common, then prefix

those attributes by the relation

name.

Cartesian product (cross-product)

SELECT *

FROM R, S

RxS:A B

x

y

1

2

C D

x
y
z
z

10
10
20
10

E

a
a
b
bR

S

A B

x
x
x
x
y
y
y
y

1
1
1
1
2
2
2
2

C D

x
y
z
z
x
y
z
z

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

If there is no WHERE clause for 2 relations, it is probably a bug,
as it will produce a Cartesian product (cross-product) – a huge
relation of size T(R)*T(S)

• Natural join (⋈) - a Cartesian product with equality condition on

common attributes

Example:

• If R has schema R(A, B, C, D), and if S has schema S(E, B, D)

• Common attributes: B and D

• Then:

R ⋈ S = π A, B, C, D, E [R.B = S.B R.D = S.D (R x S)]

• In SQL:

SELECT R.A, B, C, D, E FROM R, S WHERE R.B = S.B AND R.D = S.D

SELECT * FROM R NATURAL JOIN S

Join: reminder

Join: Example

Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Join: Example

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

Join: Example

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

Join: Example

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

Join: Example

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

Semantically: A Subset of the
Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×

Cross
Product

Filter by
conditions
(r.A = s.A)

… Can we actually
implement a join
this way?

𝐑 ⋈ 𝑺 Example: Returns all pairs of
tuples 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 such that
𝑟. 𝐴 = 𝑠. 𝐴

How do we evaluate the following query:

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Answer B D

2 x

R A B C S C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Plan I

• Do Cartesian product (produce all pairs FROM R, S)

• Select tuples according to WHERE clause

• Do projection: select only columns of SELECT clause

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

RxS R.A R.B R.C S.C S.D S.E

a 1 10 10 x 2

a 1 10 20 y 2

.

.

c 2 10 10 x 2
.
.

Product, select, project

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Each row of R
is coupled with
each row of S

RxS R.A R.B R.C S.C S.D S.E

a 1 10 10 x 2

a 1 10 20 y 2

.

.

c 2 10 10 x 2
.
.

Scan the resulting (huge!) product table and check conditions

Bingo!

Got one...

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Plan II
• Do selection on R

• Do selection on S

• Join results on attribute C

• Project B,D columns and place in the result

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

R S

A B C (R) (S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

Select, join, project

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Use R.A and S.C Indexes

• Use R.A index to select R tuples with R.A = “c”

• For each R.C value found, use S.C index to find matching
tuples from S

• Eliminate S tuples where S.E 2

• In surviving R,S tuples, project B,D attributes and place
in result

Plan III

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

=“c”

<c,2,10>

Search, join, project

Select B,D

From R,S

Where R.A = “c” AND S.E = 2 AND R.C=S.C

R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

=“c”

<c,2,10> <10,x,2>

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Search, join, project

R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

A C

I1 I2

=“c”

<c,2,10> <10,x,2>

check=2?

output: <2,x>

SELECT B,D

FROM R,S

WHERE R.A = “c” AND S.E = 2 AND R.C=S.C

Search, join, project

Join algorithm I:
Nested Loop

Setup
• We write 𝐑 ⋈ 𝑺 to mean join R and S by returning all tuple pairs where

all shared attributes are equal

• We write 𝐑 ⋈ 𝑺 on A to mean join R and S by returning all tuple pairs
where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with equality
constraints (“equijoins”)

• Given a relation R, let:

• T(R) = # of tuples in R

• B(R) = # of blocks (pages) in R

However joins can merge > 2
tables, and some algorithms do
support non-equality
constraints!

Recall that we read / write
entire pages with disk IO

Nested Loop Join (NLJ)

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Nested Loop Join (NLJ)

B(R)

1. Loop over the tuples in R

Note that our IO cost is based
on the number of pages
loaded, not the number of
tuples!

Cost:

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Nested Loop Join (NLJ)

B(R) + T(R)*B(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

Cost:

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Nested Loop Join (NLJ)

B(R) + T(R)*B(S)

Note that NLJ can handle things other than equality
constraints… just change the if statement!

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join
conditions

Cost:

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Nested Loop Join (NLJ)

B(R) + T(R)*B(S)

1. Loop over the tuples in R

2. For every tuple in R, loop
over all the tuples in S

3. Check against join conditions

4. Output combined tuple if
match

Cost:

What would the result be if
our join condition is trivial
(if TRUE)?

Nested Loop Join (NLJ)

B(R) + T(R)*B(S)

What if R (“outer”) and S
(“inner”) switched?

Cost:

B(S) + T(S)*B(R)

Outer vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!

for r in R:

for s in S:

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Join algorithm IA:
Block Nested Loop
IO-aware modification

Block Nested Loop Join (BNLJ)

for each chunk cR of R of size M-1:

load cR pages of R into mem

for each ps page of S:

for each tuple s in ps:

for each tuple r in cR

if r[A] == s[A]:

OUT (r,s)

B(𝑅)

Given M pages of memory

1. Load in M-1 pages of R at a
time (leaving 1 page free for
S)

Cost:

Note: There could be some
speedup here due to the fact
that we’re reading multiple
pages sequentially however
we’ll ignore this here!

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

for each chunk cR of R of size M-1:

load cR pages of R into mem

for each ps page of S:

for each tuple s in ps:

for each tuple r in cR

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Block Nested Loop Join (BNLJ)

B 𝑅 +
𝐵 𝑅

𝑀 − 1
𝐵(𝑆)

Given M pages of memory

Note: Faster to iterate over the
smaller relation first!

1. Load in M-1 pages of R at a
time (leaving 1 page free for
S)

2. For each (M-1)-page
segment of R, load each
page of S

Cost:

for each chunk cR of R of size M-1:

load cR pages of R into mem

for each ps page of S:

for each tuple s in ps:

for each tuple r in cR

if r[A] == s[A]:

OUT (r,s)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

Block Nested Loop Join (BNLJ)
Given M pages of memory

1. Load in M-1 pages of R at a
time (leaving 1 page free for
S)

2. For each (M-1)-page
segment of R, load each
page of S

3. Check against the join
conditions with all in-mem
tuples

BNLJ can also handle non-equality conditions

Cost:

B 𝑅 +
𝐵 𝑅

𝑀 − 1
𝐵(𝑆)

BNLJ vs. NLJ: Benefits of IO Aware

• In BNLJ, by loading larger chunks of R, we minimize the
number of full disk reads of S

• We only read all of S from disk for every (M-1)-page
segment of R!

• Still the full cross-product, but more done in memory

B 𝑅 +
𝐵 𝑅

𝑀 − 1
𝐵(𝑆)

B(R) + T(R)*B(S)

NLJ BNLJ

BNLJ is faster by roughly
(𝑀−1)𝑇(𝑅)

𝐵(𝑅)
!

BNLJ vs. NLJ: Benefits of IO Aware

• Example:
• B(R) = 500 pages
• B(S) = 1000 pages
• T (R) = 50,000 tuples
• T (S) = 100,000 tuples
• We have 11 pages of memory (M = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

• BNLJ: Cost = 500 +
500∗1000

10
= 50 Thousand IOs ~= 0.14 hours

A very real difference from a small
change in the algorithm!

Can we do better than
Cross-Product?

Smarter than cross-products:
from quadratic to nearly linear

• All joins that compute the full cross-product have some
quadratic term

• For example we saw:

• Now we’ll see some (nearly) linear joins:

• ~ O(B(R) + B(S))

B 𝑅 +
𝑩 𝑹

𝑀 − 1
𝑩(𝑺)

B(R) + T(R)B(S)NLJ

BNLJ

We get this gain by taking advantage of data structures and
algorithms – for simplicity considering equality constraints

(“equijoin”) only!

Join algorithms II:
Index Nested Loop

Index Nested Loop Join (INLJ)

Given index I on S.A:

for r in R:

sL = index I(r[A])

for s in sL:

OUT r,s

B(R) + T(R)*(THi +SC(S,A))

We can use an index (e.g. B+ Tree) to avoid doing
the full cross-product!

where THi is the height of a B-
tree and SC(S,A) is the IO cost
to collect all values equal to
r[A] in the index of S.A;
assuming these fit on one
page, ~ 3 is good est.

Cost:Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

B(R) + 3 T(R)

INLJ - cost

• We want to compute R(X,Y) ⋈ S(Y,Z) on Y

• Suppose there is an index on S[Y].

• Cost:
• B(R) to read entire R once
• Each tuple of R joins with SC(S,Y) = T(S)/V(S,Y) tuples of

S, on average.
• If S has a non-clustered index on Y:
I/O cost is B(R) + T(R) x (THi + T(S)/V(S,Y))

• If S has a clustered index on Y:
I/O cost is B(R) + T(R) x (THi + B(S)/V(S,Y))

Algorithm:
for each tuple r of R, lookup all tuples in S with
key r[Y] and output their join with r.

INLJ: cost example

• T(R) = 10,000, B(R) = 1000

• T(S) = 5000, B(S) = 500, V(S,Y) = 100

• M = 11

INLJ:

• To compute R(X,Y) ⋈ S(Y,Z) using a clustered index on S[Y]:

1000 + 10,000*(3+500/100) = 81,000 I/O’s

• Even when the top level of B-tree is buffered:

1000 + 10,000*(1+500/100) = 61,000 I/O’s

BNLJ:

• 1000 + 100*500 = 51,000 I/Os

INLJ - clustered index on B[Y]:
B(R) + T(R) x (3 + B(S)/V(S,Y))

BNLJ:

𝐁 𝐑 +
𝐁 𝐑

𝐌− 𝟏
𝐁(𝐒)

 Use of index is not beneficial if
selection cardinality is high (50 in
this example)

B(R) + T(R)*(THi +SC(S,A))

Join using sorted indexes

• We want to compute R(X,Y) ⋈ S(Y,Z) on Y

• If both R and S have sorted (B-tree) index on Y, do a zigzag-

join:

• We scan the leaves of both B-trees in order. In the best

case, we use just B(R) + B(S) disk I/O’s to read their

indexes (if there are no matching values).

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

• Since 2<3 skip the 2’s in S’s index.

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

• Since 2<3 skip the 2’s in S’s index.

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

• Since 2<3 skip the 2’s in S’s index.

• Since 3<4 skip 3 in R.

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

• Since 2<3 skip the 2’s in S’s index.

• Since 3<4 skip 3 in R.

• Join 4’s (retrieve records).

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.

• Since 2<3 skip the 2’s in S’s index.

• Since 3<4 skip 3 in R.

• Join 4’s (retrieve records).

• …

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Zigzag Join

• We jump back and forth between the indexes finding Y-values that they

share in common.

• Tuples from R with Y-value that don’t appear in S need never be retrieved,

and similarly tuples of S whose Y-value doesn’t appear in R need never be

retrieved.

• The worst-case cost (clustered indexes, R < S):

• B(R) + B(S) + B(R) * B(S) / V (S, a)

1 3 4 4 4 5 6

2 2 4 4 6 7

Leaves of B-tree index
on R[Y]

Leaves of B-tree index
on S[Y]

Join algorithm III:
Sort-Merge Join (SMJ)

Sort Merge Join (SMJ): Basic
Procedure

To compute R ⋈ 𝑆 𝑜𝑛 𝐴:

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next]

Note that if R, S are already sorted on A,
SMJ will be awesome!

Note that we are only considering
equality join conditions here

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
• For simplicity: Let each page be one tuple, and let the first

value be of column A

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
1. Sort the relations R, S on the join key (first value)

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)

Disk

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
2. Scan and “merge” on join key!

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)

We show the
current file
pointer, which
is the value
currently in
buffer

Disk

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
2. Scan and “merge” on join key!

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)

Disk

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
2. Scan and “merge” on join key!

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)
(3,j) (3,g)

Disk

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴
with 3-page buffer
2. Done!

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)
(5,b) (7,f)

Disk

What happens if join keys
have many duplicates?

Multiple tuples
with same join key: “backup”
1. Start with sorted relations, and begin scan / merge…

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)

Disk

1. Start with sorted relations, and begin scan / merge…

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

Multiple tuples
with same join key: “backup”

Disk

1. Start with sorted relations, and begin scan / merge…

Main Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)
(0,g)

(0,j)

Multiple tuples
with same join key: “backup”

Disk

(0,g)

1. Start with sorted relations, and begin scan / merge…

Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j)

Have to “backup” in the scan of S and read
tuples we’ve already read!

(0,j)(0,j)

Disk

Multiple tuples
with same join key: “backup”

SMJ: cost of a final scan

• At best, no backup final scan takes B(R) + B(S) reads

• For ex.: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take B(R) *
B(S) reads!

• For ex.: if all duplicate values in join attribute, i.e. all
tuples in R and S have the same value for the join
attribute

• Roughly: For each page of R, we’ll have to back up and
read each page of S…

• Not a very realistic scenario

SMJ: Total cost

• Cost of SMJ is cost of sorting R and S and writing temporary
sorted files: 4B(R) + 4B(S)

• Plus the cost of scanning: ~B(R)+B(S)

• Because of backup: in worst case B(R)*B(S); but this
would be very unlikely

5B(R) + 5B(S)

SMJ cost: example

• We have 101 buffer pages,

• B(R) = 1000, and B(S) = 500 pages:

• SMJ:
• Sort both in two passes: 4* 1000 + 4* 500 = 6,000 IOs
• Merge-join phase 1000 + 500 = 1,500 IOs
• = 7,500 IOs

• What with BNLJ?

• 500 + 1000*
500

100
= 5,500 IOs

• But, if we have 26 buffer pages?
• SMJ has same behavior (still 2 passes): = 7,500 IOs
• BNLJ? 25,500 IOs!

SMJ is ~ linear vs. BNLJ is quadratic…

BNLJ:

𝐁 𝐑 +
𝐁 𝐑

𝐌− 𝟏
𝐁(𝐒)

SMJ:
5*B(R) + 5*B(S)

A simple optimization for SMJ:
join during sort
• SMJ is composed of a 2PMMS sort and a join of sorted

tuples

• During the 2PMMS, if R and S have <= (M - 1) (sorted) runs
in total:

• We could do two separate 2PMMS merges (for each of R
& S) at this point, complete the sort phase, and start the
join phase…

• OR, we could combine them: do one (M - 1)-way merge
simultaneously for R and S and complete the join!

Given M buffer pages

Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Un-Optimized SMJ

SR

Split & sortSplit & sort

Merge

MergeMerge

Given M buffer pages

Joined output
file created!

Unsorted input relations

Merge / Join Phase

Partition sort Phase
(2PMMS)

Simple SMJ Optimization

SR

Split & sortSplit & sort

Given M buffer pages

Joined output
file created!

Unsorted input relations

<= (M-1) total runs for R and S

(M-1)-Way Merge / Join

Optimized SMJ: memory
requirements
• If we can initially split R and S into total M-1 runs, each run of length <=

M, then we only need 3(B(R) + B(S)) for SMJ!

• 2 Read/Write per page to sort runs in memory, 1 Read per page to

(M-1)-way merge / join!

• How much memory for this to happen?

•
𝐵 𝑅 +𝐵(𝑆)

𝑀−1
≤ 𝑀 ⇒ ~ B R + B S ≤ 𝑀2

• Thus, 𝐌 ≥ 𝐬𝐪𝐫𝐭 (𝐁 𝐑 + 𝐁 𝐒) is an approximate sufficient condition

for this algorithm

Given M buffer pages

If the sum of R,S has <= M2 pages, then SMJ costs
3(B(R)+B(S))!

Takeaway points from SMJ

If input already sorted on join key, skip the sorts

• SMJ is basically linear

• Nasty but unlikely case: too many duplicate join keys

SMJ needs to sort both relations

• If B(R) + B(S) <= M2 then cost is 3(B(R) + B(S))

Join algorithm IV:
Hash Join (HJ)

Recall: Hashing

• Magic of hashing:

• A hash function hM maps into [0,M-1]

• And maps nearly uniformly

• A hash collision is when x != y but hM(x) = hM(y)

• Note however that it will never occur that

x = y but hM(x) != hM(y)

• We hash on attribute A, so our hash function hM(t) has the
form hM(t.A).

• Collisions may be more frequent, as we have much
more tuples than the buckets

Hash Join: High-level

To compute R ⋈ 𝑆 𝑜𝑛 𝐴:

1. Partition Phase: Using one (shared) hash function hM,
partition R and S into M-1 buckets

2. Matching Phase: Take pairs of buckets whose tuples have
the same values for h, and join these

Note again that we are only
considering equality join
condition here

We decompose the problem using hM,
then complete the join

HJ: high-level

1. Partition Phase: Using one (shared) hash function hM,
partition R and S into M-1 buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note our new convention: pages each
have two tuples (one per row)

HJ: high-level

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

2. Matching Phase: Take pairs of buckets whose tuples have
the same values for hM, and join these

(3,j)
(3,b)

Disk
Disk

HJ: high-level

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

2. Matching Phase: Take pairs of buckets whose tuples have
the same values for hM, and join these

(3,j)
(3,b)

Don’t have
to join the
others! E.g.
these!

Disk
Disk

Hash Join phase 1: partitioning

Goal: For each relation, partition relation into buckets such
that if hM(t.A) = hM(t’.A) they are in the same bucket

Given M buffer pages, we partition into M-1 buckets:

• We use M-1 buffer pages for output (one for each
bucket), and 1 for input

• The “dual” of merge-sorting.

• For each tuple t in input, copy to a buffer page
hM(t.A)

• When buffer fills up, flush to disk

Given M buffer pages

How big are the resulting
buckets?
• Given B blocks of R, we partition into M-1 buckets:

• Ideally our buckets are each of equal size ~ B/M

pages

• What happens if there are many hash collisions?

• Some buckets could be > B/M

• What happens if there are multiple duplicate join keys?

• Nothing we can do here… could have some skew in size

of the buckets

Given M buffer pages

How big at most do we want the
resulting buckets?
• Ideally, our buckets would be of size ≤ 𝑴− 𝟏 pages

• Recall: If we want to join a bucket Ri from R and one from S,
we can do BNLJ in linear time if for one of them (say Ri),
𝑩(𝑹𝒊) ≤ 𝑴− 𝟏!

• And more generally, being able to fit bucket in memory is
advantageous

Recall for BNLJ:

B 𝑅 +
𝐵 𝑅 𝐵(𝑆)

𝑀 − 1

Given M buffer pages

We partition into M-1 = 2 buckets using hash function h2 so that we
can have one buffer page for each partition (and one for input)

Hash Join Phase 1: Example

Disk

R

(3,j)
(0,j)

Given M = 3 buffer pages

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

For simplicity, we’ll look at partitioning
one of the two relations - we just do the
same for the other relation!

Recall: our goal will be to get M - 1 = 2
buckets of size <= M -1 2 pages each

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

Disk

R

Hash Join Phase 1: Example

Given M = 3 buffer pages

(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

Disk

2. Then we use hash function h2 to find the output bucket,
which each has one page in the buffer

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

R

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

Hash Join Phase 1: Example
Given M = 3 buffer pages

(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

(3,a)

h2(3) = 1

(0,a) (3,a)

Hash Join Phase 1: Example
Given M = 3 buffer pages

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

2. Then we use hash function h2 to find the output bucket,
which each has one page in the buffer

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

(0,a)
(0,j)

(3,a)
(3,j)

Hash Join Phase 1: Example

Given M = 3 buffer pages

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

3. We repeat until the buffer bucket pages are full… then flush
to disk

Main Memory

Buffer

Inpu
t

page

0 1

Output (bucket) pages

R0

R1

Hash Join Phase 1: Example
Given M = 3 buffer pages

(0,a)
(0,j)

(3,a)
(3,j)

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

R0

R1

Hash Join Phase 1: Example
Given M = 3 buffer pages

(0,a)
(0,j)

(3,a)
(3,j)

Note that collisions can occur!

(5,a)
(0,j)

Collision!!!

h2(5) = h2(3) = 1

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

Main Memory

Buffer

Input
page

0 1

Output (bucket) pages

R0

R1

Hash Join Phase 1: Example
Given M = 3 buffer pages

(0,a)
(0,j)

(3,a)
(3,j)

Finished phase I for R

(5,a)
(5,b)

(0,j)

Disk

R
(3,j)
(0,j)

(5,b)

(0,a)
(3,a)

(5,a)
(0,j)

R0

R1

Hash Join Phase 1: complete
Given M = 3 buffer pages

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(5,b)

(0,j)

We wanted buckets of size M-1 = 2…
Some of them could be larger due to:

(1) Duplicate join keys

(2) Hash collisions

Now that we have
partitioned R and S…

• Now, we just join pairs of buckets from R and S that have the
same hash value to complete the join!

Hash Join Phase 2: Matching

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R0

S0

hM

S1

R1

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join
matching
buckets

(3,j)
(3,b)

Hash Join Phase 2: Matching

• Again, since x = y h(x) = h(y), we only need to consider
pairs of buckets (one from R, one from S) that have the
same hash function value

• If our buckets are ~𝑴− 𝟏 pages each, can join each such
pair using BNLJ in linear time; recall (with B(R) = M-1):

BNLJ Cost: B 𝑅 +
𝐵 𝑅 𝐵(𝑆)

𝑀−1
= 𝐵(𝑅) +

𝑀−1 𝐵(𝑆)

𝑀−1
= B(R) + B(S)

Joining the pairs of buckets is linear!
(As long as smaller bucket <= M-1 pages)

Hash Join Phase 2: Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ 𝑆 𝑜𝑛 𝐴

If condition is an equality
– we explore only
matching buckets –
diagonal

Hash Join Phase 2: Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed
values

R ⋈ 𝑆 𝑜𝑛 𝐴

If it is not an equijoin, we
explore this whole grid!

Hash Join: memory requirements

• Given M buffer pages

• Suppose (reasonably) that we can partition into M buckets
in 1 pass:

• For R, we get M buckets of size ~B(R)/M

• To join these buckets in linear time, we need each
bucket of R to fit in M-1 pages, so we have:

Assume B(R) <= B(S)

𝑀 − 1 ≥
𝐵 𝑅

𝑀
⇒ ~𝑴𝟐 ≥ 𝑩(𝑹)

Quadratic relationship
between smaller
relation’s size & memory!

Hash Join: cost

• Given enough buffer pages as on previous slide…

• Partitioning requires reading + writing each page of R,S
• 2(B(R)+B(S)) IOs

• Matching (with BNLJ) requires reading each page of R,S
• B(R) + B(S) IOs

HJ takes ~3(B(R)+B(S)) !

Sort-Merge vs. Hash Join

• Given enough memory, both SMJ and HJ have performance:

• “Enough” memory =

• SMJ: M2 > B(R) + B(S)

• HJ: M2 > min{B(R), B(S)}

Hash Join superior if relation sizes differ greatly. Why?

~3(B(R)+B(S))

Further Comparison of Hash vs.
Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is sorted

Summary

• Saw IO-aware join algorithms

• Massive difference

• Memory sizes are the key in hash versus sort join

• Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor

Impact of Buffering

• If several operations are executing concurrently, estimating the
number of available buffer pages is guesswork

• Repeated access patterns interact with buffer replacement policy

• e.g., Inner relation is scanned repeatedly in Simple Nested
Loop Join. With enough buffer pages to hold inner,
replacement policy does not matter. Otherwise, MRU is best,
LRU is worst (sequential flooding).

• Does replacement policy matter for Block Nested Loops?

• What about Index Nested Loops? Sort-Merge Join?

